HG 2005 H

Sketch answers to the ordinary exam 2004 H

(Note that the answers given are just sketchy. The exam paper would normally require some more commenting or details.)

Problem 1

1a

$$\int_{0}^{1} x^{\theta} dx = \frac{1}{\theta + 1}. \quad \text{Graph} \quad \dots$$

1b.

$$F(x) = x^5,$$

(i)
$$P(0,5 \le X \le 0.8) = 0.8^5 - 0.5^5 = 0.328 - 0.031 = 0.297$$
,

(ii)
$$P(X > 0.8) = 1 - 0.8^5 = 1 - 0.328 = 0.672$$
,

(iii) Median:
$$m^5 = 0.5 \Rightarrow m = 0.5^{1/5} = 0.871$$

1c.

$$E(X^r) = \frac{\theta + 1}{\theta + 1 + r} \Rightarrow E(X) = \frac{\theta + 1}{\theta + 2} \quad \text{and} \quad E(X^2) = \frac{\theta + 1}{\theta + 3} \quad \text{from which}$$

$$var(X) = \frac{\theta + 1}{\theta + 3} - \left(\frac{\theta + 1}{\theta + 2}\right)^2 = \frac{(\theta + 1)\left[(\theta + 2)^2 - (\theta + 1)(\theta + 3)\right]}{(\theta + 3)(\theta + 2)^2} = \frac{\theta + 1}{(\theta + 3)(\theta + 2)^2}$$

1d.

$$0 < X \le 1 \Longrightarrow 0 \le Y < \infty$$
. For $y > 0$ we have

$$P(Y \le y) = P(-\ln(X) \le y) = P(\ln(X) \ge -y) = P(X \ge e^{-y}) = e^{-y(\theta+1)}$$
, which is the cdf of $\exp(\theta+1)$.

Problem 2

2a.

$$(1-0,8^{\theta+1} \ge 0,75) \Leftrightarrow (0,8^{\theta+1} \le 0,25) \Leftrightarrow ((\theta+1)\ln(0,8) \le \ln(0,25))$$
$$\Leftrightarrow \left(\theta \ge \frac{\ln(0,25)}{\ln(0,8)} - 1 = 5,21\right)$$

2b.

MME:
$$\frac{\tilde{\theta}+1}{\tilde{\theta}+2} = \bar{X}$$
 gives $\tilde{\theta} = \frac{2\bar{X}-1}{1-\bar{X}} = 6,4204$ where $\bar{X} = 0,88124$ MLE: Log likelihood: $l(\theta) = n\ln(\theta+1) + \theta \sum_{i} \ln(x_i)$ with derivative $l'(\theta) = \frac{n}{\theta+1} + \sum_{i} \ln(x_i)$ giving $\hat{\theta} = -\frac{n}{\sum_{i} \ln(X_i)} - 1 = 6,3180$

2c.

The (weak) law of large numbers. $Y_i = \ln(X_i)$ are *iid* with constant expectation, $-1/(\theta+1)$ and variance in **1c**. The probability limit follows then by Tsjebysjev's inequality. Since $\hat{\theta} = g(\overline{Y})$ is continuous, we have $p\lim(\hat{\theta}) = g(p\lim\overline{Y}) = g(-1/(\theta+1)) = -(-(\theta+1)) - 1 = \theta$,

2d.

The mgf of $Y_i = -\ln(X_i)$ is according to **1d** the mgf of a $\Gamma(1, \theta + 1)$ distribution, i.e. $M_Y(t) = \frac{\theta + 1}{\theta + 1 - t}$. Because of the independence, the mgf of $V = \sum Y_i$ is $M_Y(t) = \left(\frac{\theta + 1}{\theta + 1 - t}\right)^n$ which is the mgf of $\Gamma(n, \theta + 1)$.

2e.

$$E\left(\frac{1}{V}\right) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \int_{0}^{\infty} v^{\alpha-2} e^{-\lambda v} dv = \lambda \frac{\Gamma(\alpha-1)}{\Gamma(\alpha)} \frac{\lambda^{\alpha-1}}{\Gamma(\alpha-1)} \int_{0}^{\infty} v^{\alpha-2} e^{-\lambda v} dv = \frac{\lambda}{\alpha-1}$$

We find
$$E(\hat{\theta}) = E\left(\frac{n}{V} - 1\right) = n\frac{\theta + 1}{n - 1} - 1 = \frac{n}{n - 1}\theta + \frac{1}{n - 1}$$
 which $\to \theta$ as $n \to \infty$.